- Documentation
- Reference manual
- Built-in Predicates
- Notation of Predicate Descriptions
- Character representation
- Loading Prolog source files
- Editor Interface
- Verify Type of a Term
- Comparison and Unification of Terms
- Control Predicates
- Meta-Call Predicates
- Delimited continuations
- Exception handling
- Printing messages
- Handling signals
- DCG Grammar rules
- Database
- Declaring predicate properties
- Examining the program
- Input and output
- Status of streams
- Primitive character I/O
- Term reading and writing
- Analysing and Constructing Terms
- Analysing and Constructing Atoms
- Localization (locale) support
- Character properties
- Operators
- Character Conversion
- Arithmetic
- Misc arithmetic support predicates
- Built-in list operations
- Finding all Solutions to a Goal
- Forall
- Formatted Write
- Global variables
- Terminal Control
- Operating System Interaction
- File System Interaction
- User Top-level Manipulation
- Creating a Protocol of the User Interaction
- Debugging and Tracing Programs
- Debugging and declaring determinism
- Obtaining Runtime Statistics
- Execution profiling
- Memory Management
- Windows DDE interface
- Miscellaneous
- Built-in Predicates
- Packages
- Reference manual
4.6 Comparison and Unification of Terms
Although unification is mostly done implicitly while matching the head of a predicate, it is also provided by the predicate =/2.
- [ISO]?Term1 = ?Term2
- Unify Term1 with Term2. True if the unification
succeeds. It acts as if defined by the following fact:
=(Term, Term).
For behaviour on cyclic terms see the Prolog flag occurs_check. Calls to =/2 in a clause body are compiled and may be (re)moved depending on the Prolog flag optimise_unify. See also section 2.17.3.
- [ISO]@Term1 \= @Term2
- Equivalent to
.\+
Term1 = Term2This predicate is logically sound if its arguments are sufficiently instantiated. In other cases, such as
?- X
, the predicate fails although there are solutions. This is due to the incomplete nature of \+/1.\=
Y.To make your programs work correctly also in situations where the arguments are not yet sufficiently instantiated, use dif/2 instead.
4.6.1 Standard Order of Terms
Comparison and unification of arbitrary terms. Terms are ordered in the so-called “standard order” . This order is defined as follows:
- Variables < Numbers < Strings < Atoms < Compound Terms
- Variables are sorted by address.
- Numbers are compared by value. Mixed rational/float are
compared using cmpr/2.66Up
to 9.1.4, comparison was done as float. NaN is considered
smaller than all numbers, including
-inf
. If the comparison is equal, the float is considered the smaller value. If the Prolog flag iso is defined, all floating point numbers precede all rationals. - Strings are compared alphabetically.
- Atoms are compared alphabetically.
- Compound terms are first checked on their arity, then on their functor name (alphabetically) and finally recursively on their arguments, leftmost argument first.
Although variables are ordered, there are some unexpected properties
one should keep in mind when relying on variable ordering. This applies
to the predicates below as to predicate such as sort/2
as well as libraries that reply on ordering such as library library(assoc)
and library
library(ordsets)
. Obviously, an established relation A
B
no longer holds if A is unified with e.g., a number. Also
unifying A with B invalidates the relation because
they become equivalent (==/2) after unification.
@<
As stated above, variables are sorted by address, which implies that they are sorted by‘age’, where‘older’variables are ordered before‘newer’variables. If two variables are unified their‘shared’age is the age of oldest variable. This implies we can examine a list of sorted variables with‘newer’(fresh) variables without invalidating the order. Attaching an attribute, see section 8.1, turns an‘old’variable into a‘new’one as illustrated below. Note that the first always succeeds as the first argument of a term is always the oldest. This only applies for the first attribute, i.e., further manipulation of the attribute list does not change the‘age’.
?- T = f(A,B), A @< B. T = f(A, B). ?- T = f(A,B), put_attr(A, name, value), A @< B. false.
The above implies you can use e.g., an assoc (from library
library(assoc)
, implemented as an AVL tree) to maintain
information about a set of variables. You must be careful about what you
do with the attributes though. In many cases it is more robust to use
attributes to register information about variables.
Note that the standard order is not well defined on rational trees, also known as cyclic terms. This issue was identified by Mats Carlsson, quoted below. See also issue#1162 on GitHub.
Consider the terms A and B defined by the equations[1] A = s(B,0). [2] B = s(A,1).
- Clearly, A and B are not identical, so either
A @< B
orA @> B
must hold.
- Assume
A @< B
. But then,s(A,1) @> s(B,0)
i.e.,B @< A
. Contradicton.
- Assume
A @> B
. But then,s(A,1) @< s(B,0)
i.e.,B @< A
. Contradicton.
- [ISO]@Term1 == @Term2
- True if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.
- [ISO]@Term1 \== @Term2
- Equivalent to
.\+
Term1 == Term2 - [ISO]@Term1 @< @Term2
- True if Term1 is before Term2 in the standard order of terms.
- [ISO]@Term1 @=< @Term2
- True if both terms are equal (==/2) or Term1 is before Term2 in the standard order of terms.
- [ISO]@Term1 @> @Term2
- True if Term1 is after Term2 in the standard order of terms.
- [ISO]@Term1 @>= @Term2
- True if both terms are equal (==/2) or Term1 is after Term2 in the standard order of terms.
- [ISO]compare(?Order, @Term1, @Term2)
- Determine or test the Order between two terms in the standard
order of terms. Order is one of
,<
or>
, with the obvious meaning.=
4.6.2 Special unification and comparison predicates
This section describes special purpose variations on Prolog unification. The predicate unify_with_occurs_check/2 provides sound unification and is part of the ISO standard. The predicate subsumes_term/2 defines‘one-sided unification’and is part of the ISO proposal established in Edinburgh (2010). Finally, unifiable/3 is a‘what-if’version of unification that is often used as a building block in constraint reasoners.
- [ISO]unify_with_occurs_check(+Term1, +Term2)
- As =/2, but using sound
unification. That is, a variable only unifies to a term if this
term does not contain the variable itself. To illustrate this, consider
the two queries below.
1 ?- A = f(A). A = f(A). 2 ?- unify_with_occurs_check(A, f(A)). false.
The first statement creates a cyclic term, also called a rational tree. The second executes logically sound unification and thus fails. Note that the behaviour of unification through =/2 as well as implicit unification in the head can be changed using the Prolog flag occurs_check.
The SWI-Prolog implementation of unify_with_occurs_check/2 is cycle-safe and only guards against creating cycles, not against cycles that may already be present in one of the arguments. This is illustrated in the following two queries:
?- X = f(X), Y = X, unify_with_occurs_check(X, Y). X = Y, Y = f(Y). ?- X = f(X), Y = f(Y), unify_with_occurs_check(X, Y). X = Y, Y = f(Y).
Some other Prolog systems interpret unify_with_occurs_check/2 as if defined by the clause below, causing failure on the above two queries. Direct use of acyclic_term/1 is portable and more appropriate for such applications.
unify_with_occurs_check(X,X) :- acyclic_term(X).
- +Term1 =@= +Term2
- True if Term1 is a variant
of (or structurally equivalent to) Term2. Testing
for a variant is weaker than equivalence (==/2),
but stronger than unification (=/2).
Two terms A and B are variants iff there exists a
renaming of the variables in A that makes A
equivalent (==) to B and vice versa.67Row 7
and 8 of this table may come as a surprise, but row 8 is satisfied
by (left-to-right) A→, B→ and
(right-to-left) C→, A→. If the same
variable appears in different locations in the left and right term, the
variant relation can be broken by consistent binding of both terms.
E.g., after binding the first argument in row 8 to a value, both
terms are no longer variant. Examples:
1 a =@= A
false 2 A =@= B
true 3 x(A,A) =@= x(B,C)
false 4 x(A,A) =@= x(B,B)
true 5 x(A,A) =@= x(A,B)
false 6 x(A,B) =@= x(C,D)
true 7 x(A,B) =@= x(B,A)
true 8 x(A,B) =@= x(C,A)
true A term is always a variant of a copy of itself. Term copying takes place in, e.g., copy_term/2, findall/3 or proving a clause added with asserta/1. In the pure Prolog world (i.e., without attributed variables), =@=/2 behaves as if defined below. With attributed variables, variant of the attributes is tested rather than trying to satisfy the constraints.
A =@= B :- copy_term(A, Ac), copy_term(B, Bc), numbervars(Ac, 0, N), numbervars(Bc, 0, N), Ac == Bc.
The SWI-Prolog implementation is cycle-safe and can deal with variables that are shared between the left and right argument. Its performance is comparable to ==/2, both on success and (early) failure. 68The current implementation is contributed by Kuniaki Mukai.
This predicate is known by the name variant/2 in some other Prolog systems. Be aware of possible differences in semantics if the arguments contain attributed variables or share variables.69In many systems variant is implemented using two calls to subsumes_term/2.
- +Term1 \=@= +Term2
- Equivalent to
‘
. See =@=/2 for details.\+
Term1 =@= Term2’ - [ISO]subsumes_term(@Generic, @Specific)
- True if Generic can be made equivalent to Specific
by only binding variables in Generic. The current
implementation performs the unification and ensures that the variable
set of Specific is not changed by the unification. On
success, the bindings are undone.70This
predicate is often named subsumes_chk/2
in older Prolog dialects. The current name was established in the ISO
WG17 meeting in Edinburgh (2010). The
chk
postfix was considered to refer to determinism as in e.g., memberchk/2. This predicate respects constraints.See section 5.6 for defining clauses whose head is unified using single sided unification.
- term_subsumer(+Special1, +Special2, -General)
- General is the most specific term that is a generalisation of Special1 and Special2. The implementation can handle cyclic terms.
- unifiable(@X, @Y, -Unifier)
- If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required to make X and Y equivalent.71This predicate was introduced for the implementation of dif/2 and when/2 after discussion with Tom Schrijvers and Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome. This predicate can handle cyclic terms. Attributed variables are handled as normal variables. Associated hooks are not executed.
- ?=(@Term1, @Term2)
- Succeeds if the syntactic equality of Term1 and Term2
can be decided safely, i.e. if the result of
Term1 == Term2
will not change due to further instantiation of either term. It behaves as if defined by?=(X,Y) :- \+ unifiable(X,Y,[_|_]).